[1]高樹國,劉雲鵬,賀鵬,等.不同敷設方式對分布式光纖監測變壓器繞組變形的影響研究[J].高壓電器,2018,54(11):253-259.[doi:10.13296/j.1001-1609.hva.2018.11.037]
 GAO Shuguo,LIU Yunpeng,HE Peng,et al.Research on the Influence of Different Laying Modes on Transformer Winding Deformation of Distributed Optical Fiber Monitoring[J].High Voltage Apparatus,2018,54(11):253-259.[doi:10.13296/j.1001-1609.hva.2018.11.037]
點擊複制

不同敷設方式對分布式光纖監測變壓器繞組變形的影響研究 ()
分享到:

《高壓電器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第54卷
期數:
2018年11期
頁碼:
253-259
欄目:
電力變壓器局部放電檢測及狀態評估
出版日期:
2018-11-05

文章信息/Info

Title:
Research on the Influence of Different Laying Modes on Transformer Winding Deformation of Distributed Optical Fiber Monitoring
作者:
高樹國1劉雲鵬2賀鵬2步雅楠2田源2孫路1孟令明1
1. 國網河北省電力公司電力科學研究院, 石家莊 050021; 2. 華北電力大學, 河北 保定 071003
Author(s):
GAO Shuguo1 LIU Yunpeng2 HE Peng2 BU Yanan2 TIAN Yuan2 SUN Lu1 MENG Lingming1
1. State Grid Hebei Electric Power Research Institute, Shijiazhuang 050021, China; 2. North China Electric Power University, Heibei Baoding 071003, China
關鍵詞:
繞組變形 敷設方式 布裏淵散射 分布式光纖 應變監測
Keywords:
transformer winding deformation laying mode brillouin scattering distributed fiber strain monitoring
DOI:
10.13296/j.1001-1609.hva.2018.11.037
文獻標志碼:
A
摘要:
爲將分布式光纖傳感技術應用于變壓器繞組變形監測,文中對基于不同敷設方式的光纖監測變壓器繞組變形進行了研究,設計並制作了內徑側、外徑側和表面敷設分布式光纖的變壓器繞組模型,並對電磁線結構和繞組繞制工藝進行了相應的改進。最後,對上述3種繞組模型進行了局部變形試驗,並利用基于布裏淵散射原理的分布式光纖應力監測系統對其應變分布進行了監測和評估。結果表明,敷設于繞組外徑側的分布式光纖預應變較大,測量結果的重複性也較差;敷設于繞組內徑側和表面的分布式光纖預應變較小,應變分布較均勻,且測量結果重複性較好;但是,當分布式光纖敷設于繞組外徑側和內徑側時,工程實現較複雜且對繞組原有結構改變較大。綜合評估可得,表面敷設最適合作爲分布式光纖敷設方式應用于變壓器繞組變形監測,繞組內徑側敷設次之,繞組外徑側敷設最差。
Abstract:
In order to apply distributed optical fiber sensing technology to deformation monitoring of transformer windings, this paper researches the transformer winding deformation on different laying modes of fibers. In this paper, the transformer winding model of distributed fiber is laid on the inner diameter side, outer diameter side and surface. These models are used to simulate the winding deformation in practical operation. The process of transformer winding has been corresponding improved. When the winding is partially deformed, the optical fiber strain will be measured by Brillouin Optical Time Domain Reflectometer(BOTDR). The results show that the distributed optical fiber laid on the outer diameter side of the winding has large pre-strain and the repeatability of the measurement results is poor. The distributed optical fiber laid on the inner diameter side and the surface of the winding has less pre-strain, uniform strain distribution, and the reproducible results. However, when the distributed optical fiber is laid on the outer diameter side and the inner diameter side of the winding, the engineering implementation is complicated and the original structure of the winding is greatly changed. In a word, the fiber laid on the winding surface is most suitable for deformation monitoring of transformer windings, which followed by laying on the inner diameter side of the winding. The worst method is the outer diameter side of the winding.

參考文獻/References:

[1] 羅健斌,郝豔捧,葉 青,等. 利用光纖光柵傳感器測量輸電線路覆冰荷載試驗[J]. 高電壓技術,2014,40(2):405-412.
LUO Jianbin,HAO Yanpeng,YE Qing,et al. Measurement for icing: Load of transmission lines using fiber bragg grating sensor[J]. High Voltage Engineering,2014,40(2):405-412.
[2] 李榮偉,劉健夫,楊 志,等. 分布式光纖溫度和應變傳感技術的研究進展[J]. 光通信研究,2010(3):44-47.
LI Rongwei,LIU Jianfu,YANG Zhi,et al. Advances in the research on distributed optical fiber temperature and strain sensing[J]. Study on Optical Communications,2010(3):44-47.
[3] SHIMIZU K,HORIGUCHI T,KOYAMADA Y,et al. Coherent self-heterodyne Brillouin OTDR for measurement of Brillouin frequency shift distribution in optical fibers[J]. Journal of Lightwave Technology,1994,12(5):730-736.
[4] 陳 強,李慶民,叢浩熹,等. 基于多點分布式光纖光柵的GIS隔離開關觸頭溫度在線監測技術[J]. 電工技術學報,2015,30(12):298-306.
CHEN Qiang,LI Qingmin,CONG Haoxi,et al. On-line temperature monitoring for GIS disconnecting switch contacts based on multipoint-distributed fiber bragg grating[J]. Transactions of China Electrotechnical Society,2015,30(12):298-306.
[5] 徐建源,陳彥文,李 輝,等. 基于短路電抗與振動信號聯合分析的變壓器繞組變形診斷[J]. 高電壓技術,2017,43(6):2001-2006.
XU Jianyuan,CHEN Yanwen,LI Hui,et al. Transformer winding deformation analysis based on short-circuit reactance and vibration signal analysis[J]. High Voltage Engineering,2017,43(6):2001-2006.
[6] 劉 勇,楊 帆,張 凡,等. 檢測電力變壓器繞組變形的掃頻阻抗法研究[J]. 中國電機工程學報,2015,35(17):4505-4516.
LIU Yong,YANG Fan,ZHANG Fan,et al. Study on sweep frequency impedance to detect winding deformation within power transformer[J]. Proceedings of the CSEE,2015,35(17):4505-4516.
[7] 張重遠,王彥波,張林康,等. 基于NICS脈沖信號注入法的變壓器繞組變形在線監測裝置研究[J]. 高電壓技術,2015,41(7):2259-2267.
ZHANG Chongyuan,WANG Yanbo,ZHANG Linkang,et al. Research on an online monitoring device for transformer winding deformation using NICS pulse injection method[J]. High Voltage Engineering,2015,41(7):2259-2267.
[8] 孫 翔,何文林,詹江楊,等. 電力變壓器繞組變形檢測與診斷技術的現狀與發展[J]. 高電壓技術,2016,42(4):1207-1220.
SUN Xiang,HE Wenlin,ZHAN Jiangyang,et al. Current status and development of test and diagnostic technique of transformer winding deformation[J]. High Voltage Engineering,2016,42(4):1207-1220.
[9] 張海軍,王曙鴻,劉豔琴. FRA法檢測電力變壓器繞組變形的試驗研究[J]. 高壓電器,2017,53(12):157-162.
ZHANG Haijun,WANG Shuhong,LIU Yanqin. Experimental study on FRA-based detection of transformer winding deformation[J]. High Voltage Apparatus,2017,53(12):157-162.
[10] 王 昕,劉偉家,鄭益慧,等. 基于超聲波技術的繞組變形3維成像檢測裝置設計[J]. 高電壓技術,2017,43(12):4054-4059.
WANG Xin,LIU Weijia,ZHENG Yihui,et al. Design of 3D imaging winding deformation detection device based on ultrasonic method[J]. High Voltage Engineering,2017,43(12):4054-4059.
[11] 錢國超,趙仲勇,鄒德旭,等. 基于連續小波變換的變壓器繞組變形故障類型檢測[J]. 高電壓技術,2017,43(6):2016-2023.
QIAN Guochao,ZHAO Zhongyong,ZOU Dexu,et al. Detection of transformer winding deformation fault types based on continuous wavelet transform[J]. High Voltage Engineering,2017,43(6):2016-2023.
[12] 黃晶晶,唐文虎,周九江,等. 基于納秒級IFRA方法的變壓器繞組變形檢測研究[J]. 電測與儀表,2018,55(1):6-13.
HUANG Jingjing,TANG Wenhu,ZHOU Jiujiang,et al. Investigation of nanosecond impulse frequency response analysis system for power transformer winding diaplacement detection[J]. Electrical Measurement & Instrumentation,2018,55(1):6-13.
[13] BAGHERI M,NADERI M S,BLACKBURN T A. Frequency response analysis and short-circuit impedance measurement in detection of winding deformation within power transformers[J]. IEEE Electrical Insulation Magazine,2013,29(3):33-40.
[14] 陳巧勇,任 紅,羅 平,等. 電力變壓器繞組變形的綜合診斷法[J]. 高壓電器,2011,47(7):50-53.
CHEN Qiaoyong,REN Hong,LUO Ping,et al. Comprehensive diagnosis method of winding deformation of power transformer[J]. High Voltage Apparatus,2011,47(7):50-53.
[15] 鄭君傑,葉 松. 基于光纖布裏淵散射的分布式海洋水溫獲取技術[J]. 半導體光電,2009,30(4):626-628.
ZHENG Junjie,YE Song. Sea water temperature measurement technology based on brillouin scattering[J]. Semiconductor Optoelectronics,2009,30(4):626-628.
[16] 趙麗娟,呂安強,張吉生. 光纖布裏淵溫度和應變同時傳感系統性能分析[J]. 光纖與電纜及其應用技術,2009(1):25-28.
ZHAO Lijuan,LYU Anqiang,ZHANG Jisheng. Performance analysis of a simultaneously sensing measurement brillouin temperature and strain sensor[J]. Optical Fiber & Electric Cable,2009(1):25-28.
[17] PARK T R,FARHADIROUSHAN M,HANDEREK V A,et al. Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers[J]. Optics Letters,1997,22(11):787-789.
[18] CULVERHOUSE D,FARAHI F,PANNELL C N,et al. Potential of stimulated Brillouin scattering as a sensing mechanism for distributed temperature sensors[J]. Electron. Lett,1989(25):913-915.
[19] 呂安強,李永倩,李 靜,等. 基于BOTDR的光纖複合海底電纜應變/溫度監測[J]. 高電壓技術,2014,40(2):533-539.
LYU Anqiang,LI Yongqian,LI Jing,et al. Strain and temperature monitoring of 110 kV optical fiber composite submarine power cable based on brillouin optical time domain reflectometer[J]. High Voltage Engineering,2014,40(2):533-539.

備注/Memo

備注/Memo:
收稿日期:2018-04-14; 修回日期:2018-06-24.高樹國(1982—),男,工學碩士,高級工程師,主要從事變壓器狀態監測與故障診斷方面的技術研究。 基金項目:國家電網總部科技項目(5204BB1600CQ);中央高校基本科研業務費專項資金資助(2016XS93、2017MS102)。 Project Supported by Science and Technology Project of SGCC(5204BB1600CQ),the Fundamental Research Funds for the Central Universities Basic(2016XS93,2017MS102).
更新日期/Last Update: 2018-11-25