[1]唐 波,劉 任,江浩田,等.基于BP神經網絡的IGBT模塊開關損耗求解[J].高壓電器,2019,55(07):27-32.[doi:10.13296/j.1001-1609.hva.2019.07.005]
 TANG Bo,LIU Ren,JIANG Haotian,et al.Solution of Switching Loss of IGBT Module Based on Back Propagation Neural Network[J].High Voltage Apparatus,2019,55(07):27-32.[doi:10.13296/j.1001-1609.hva.2019.07.005]
點擊複制

基于BP神經網絡的IGBT模塊開關損耗求解()
分享到:

《高壓電器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第55卷
期數:
2019年07期
頁碼:
27-32
欄目:
研究與分析
出版日期:
2019-07-15

文章信息/Info

Title:
Solution of Switching Loss of IGBT Module Based on Back Propagation Neural Network
作者:
唐 波 劉 任 江浩田 孫 睿 吳 卓
(三峽大學電氣與新能源學院, 湖北 宜昌  443002)
Author(s):
TANG Bo LIU Ren JIANG Haotian SUN Rui WU Zhuo
(College of Electrical Engineering & New Energy, China Three Gorges University, Hubei Yichang 443002, China)
關鍵詞:
IGBT模塊 開關損耗 損耗影響因素 BP神經網絡 粒子群算法
Keywords:
IGBT module switching loss loss factor BP neural network particle swarm algorithm
DOI:
10.13296/j.1001-1609.hva.2019.07.005
摘要:
如何准確求解絕緣柵雙極晶體管(IGBT)模塊的開關損耗值,是電力變換器性能和壽命研究中的關鍵問題之一。針對現有IGBT開關損耗模型難以准確求解開關損耗值的缺陷,引入了基于粒子群算法優化的誤差反向傳播(BP)前饋神經網絡模型。將影響開關損耗的5個主要因素(集射工作電壓、集電極電流、驅動電壓、驅動電阻、結溫)作爲BP神經網絡的輸入向量,並采用粒子群算法優化網絡的初始權值與閥值,通過共轭梯度法的學習規則加速收斂,從而獲得開關損耗的精確求解值。該模型實現了在額定值範圍內對各種工況下的IGBT模塊開關損耗值的可靠預測,其在100組測試驗證樣本下所出現的最大誤差比率爲3.85%。
Abstract:
How to solve the switching loss value of the IGBT module accurately is a key problem in the performance and lifetime studies of power converter. Aiming at the disadvantages that the existing IGBT switching loss solving models are difficult to accurately solve the switching loss value, the error back propagation (BP) neural network model optimized by the particle swarm algorithm is proposed. With taking the 5 main factors (Collector-emitter voltage, collector current, gate drive voltage, gate drive resistance, junction temperature) that affect the press-contact IGBT module switching loss as the input vector, and optimizing the initial weight and threshold of BP neural network by the particle swarm algorithm, the exact solution of the switching loss is obtained accordingly. The model realizes the reliable prediction of the switching loss of the IGBT module on various working conditions in the rated range, and the maximum error rate in 100 sets of validation samples is 3.85%.

參考文獻/References:

[1] 吳 銳,溫家良,于坤山,等. 電壓源換流器開關器件損耗建模[J]. 中國電機工程學報,2012,32(21):1-7. WU Rui, WEN Jianliang, YU Kunshan, et al. Power loss modeling of switching devices in voltage source converters[J]. Proceedings of the CSEE,2012, 32(21): 1-7.
[2] AGHDAM M G, FATHI S H, GHASEMI A. The analysis of conduction and switching losses in three-phase OHSW multilevel and switching losses in switching functions[C]// IEEE PEDS.[S.l.]:IEEE, 2005: 209-218.
[3] HEFNER A R. Analytical modeling of device-circuit interactions for the power insulated gate bipolar transistor(IGBT)[J]. IEEE Transactions on Industry Applications, 1990, 26(6): 995-1005.
[4] HEFNER A R. A dynamic electro-thermal model for the IGBT[J]. IEEE Transactions on Industry Applications, 1994, 30(2): 394-405.
[5] MATTAUSH K. Status and trends of power semiconductor device models for circuit simulation[J]. IEEE Transactions on Power Electronics, 1998, 13(3): 452-465.
[6] LU L, BRANT A, HUDGINS J L, et al. Physics-based model of planar-gate IGBT including MOS side two-dimensional effects[J]. IEEE Transactions on Industry Applications, 2010, 46(6): 2556-2567.
[7] BLAABJERG F, JAEGER U, MUNK-NIELSEN S, et al. Power losses in PWM-VSI inverter using NPT or PT IGBTs devices[J]. IEEE Transactions on Power Electronics,1995,10(3): 358-367.
[8] 熊 妍,沈燕群,江 劍,等. IGBT損耗計算和損耗模型研究[J]. 電源技術應用,2006,9(5):55-60. XIONG Yan, SHEN Yanqun, JIANG Jian, et al. Study on loss calculation and model for IGBT[J]. Power Supply Technologies and Applications, 2006, 9(5): 55-60.
[9] 潘武略,徐 政,張 靜,等. 電壓源換流器型直流輸電換流器損耗分析[J]. 中國電機工程學報,2008,28(15):72-78. PAN Wunüe,XU Zheng,ZHANG Jing,et al. Loss analysis of voltage source converter based HVDC converter[J]. Proceedings of the CSEE,2008,28(15):72-78.
[10] 毛 鵬,謝少軍,許澤剛.IGBT模塊的開關暫態模型及損耗分析[J].中國電機工程學報,2010,33(15):40-47. MAO Peng, XIE Shaojun, XU Zegang. Switching transients model and loss analysis of IGBT module[J]. Proceedings of the CSEE,2010, 33(15): 40-47.
[11] RAJAPAKSE A D, GOLE A M, WILSON P L. Electromagnetic transient simulation models for accurate representation of switching losses and thermal performance in power electronic systems[J]. IEEE Transactions on Power Delivery, 2005, 20(1): 319-327.
[12] RCICHL J V. Inverter dynamic electro-thermal simulation with experiment verification[D]. Blacksburg:Virginia Polytechnic Institute and State University,2005.
[13] DU B, HUDGINS J L, ENRICO S, et al. Transient electrothermal simulation of power semiconductor devices[J]. IEEE Transactions on Power Electron, 2010, 25(1): 237-248.
[14] CODECASA L,VINCENZO D A,MAGNANI A,et al. Circuit-Based electrothermal simulation of power devices by an ultra fast nonlinear MOR approach[J]. IEEE Transactions on Power Electron,2015,30(99): 1-13.
[15] DUONG T H, HEFNER A R, ORTIZ-RODRIGUEZ J M, et al. Physics-based electro-thermal saber model and parameter extraction for high-voltage SiC buffer-layer IGBTs[C]// IEEE Energy Conversation Congression Exposition. [S.l.]:IEEE, 2014: 460-467.
[16] 王兆安,黃 俊. 電力電子技術[M]. 北京:機械工業出版社,2000. WANG Zhao’an,HUANG Jun. Electronic power technology[M]. Beijing:Machinery Industry Press,2000.
[17] 範高鋒,王偉勝,劉 純. 基于人工神經網絡的風電功率預測[J]. 中國電機工程學報,2008,28(34):118-123. FAN Gaofeng, WANG Weisheng, LIU Chun. Wind power prediction based on artificial neural network[J]. Proceedings of the CSEE, 2008, 28(34): 118-123.
[18] 陳 娜. 中高壓功率IGBT模塊開關特性測試及建模[D]. 杭州:浙江大學,2012. CHEN Na. Switching characteristics testing and modeling of medium and high voltage igbt power module[D]. Hangzhou: Zhejiang University, 2012.
[19] CVETKOVIC I, BOROYEVICH D, MATTAVELLI P, et al. Nonlinear, hybrid terminal behavioral modeling of a DC-based nanogrid system[C]//IEEE Applied Power Electronics Conference.[S.l.]:IEEE,2011:1251-1258.
[20] LU L, BRYANT A, HUDGINS J L, et al. Physics-based model of planar-gate IGBT including MOS side two-dimensional effects[J]. IEEE Transactions on Industry Applications, 2010, 46(6): 2556-2567.

備注/Memo

備注/Memo:
唐 波(1978—),男,博士,教授,主要研究方向爲輸變電系統電磁環境。 劉 任(1990—),男,碩士研究生,主要研究方向爲輸變電系統電磁環境(通訊作者)。 江浩田(1990—),男,碩士研究生,主要研究方向爲輸變電系統電磁環境。 孫 睿(1993—),男,碩士研究生,主要研究方向爲輸變電系統電磁環境。 吳 卓(1990—),男,碩士研究生,主要研究方向爲輸變電系統電磁環境。 收稿日期:2018-11-04; 修回日期:2019-01-19 基金項目:國家自然科學基金項目(51307098)。 Project Supported by National Natural Science Foundation of China(51307098).
更新日期/Last Update: 2019-07-15