1. <li id="my27ug"></li><label id="my27ug"></label><strike id="my27ug"></strike><kbd id="my27ug"></kbd>
                    • [1]秦金飛,朱 琦,周 玮,等.基于經驗小波與小波變換的GIS局部放電信號去噪方法研究[J].高壓電器,2019,55(07):70-77,86.[doi:10.13296/j.1001-1609.hva.2019.07.011]
                       QIN Jinfei,ZHU Qi,ZHOU Wei,et al.Research on Denoising Method of GIS Partial Discharge Signal Based on Improved Empirical Wavelet and Wavelet Transform[J].High Voltage Apparatus,2019,55(07):70-77,86.[doi:10.13296/j.1001-1609.hva.2019.07.011]
                      點擊複制

                      基于經驗小波與小波變換的GIS局部放電信號去噪方法研究()
                      分享到:

                      《高壓電器》[ISSN:1001-1609/CN:61-11271/TM]

                      卷:
                      第55卷
                      期數:
                      2019年07期
                      頁碼:
                      70-77,86
                      欄目:
                      研究與分析
                      出版日期:
                      2019-07-31

                      文章信息/Info

                      Title:
                      Research on Denoising Method of GIS Partial Discharge Signal Based on Improved Empirical Wavelet and Wavelet Transform
                      作者:
                      秦金飛1 朱 琦1 周 玮2 張 軍2 薛 麗3 馮曉棟4
                      (1. 國網安徽省電力有限公司電力科學研究院, 合肥 230022; 2. 中國電力科學研究院有限公司, 武漢 430074; 3. 國網江蘇省電力公司靖江供電分公司, 江蘇 靖江 214500; 4. 武漢大學電子信息學院, 武漢 430072)
                      Author(s):
                      QIN Jinfei1 ZHU Qi1 ZHOU Wei2 ZHANG Jun2 XUE Li3 FENG Xiaodong4
                      (1. State Grid Anhui Electric Power Research Instritute, Hefei 230022, China; 2. China Electric Power Research Institute, Wuhan 430074, China; 3. State Grid Jiangsu Electric Power Company Jingjiang Power Supply Company, Jiangsu Jingjiang 214500, China; 4. School of Electronic Information, Wuhan University, Wuhan 430072, China)
                      關鍵詞:
                      經驗小波 局部放電 小波變換 峭度值
                      Keywords:
                      EWT partial discharge wavelet transfer kurtosis value
                      DOI:
                      10.13296/j.1001-1609.hva.2019.07.011
                      摘要:
                      爲解決氣體絕緣組合電器(gas insulated switchgear,GIS)內部缺陷局部放電(partial discharge,PD)信號含有噪聲的問題,搭建了模擬局部放電環境,采用超高頻法(ultra-high frequency,UHF)采集缺陷PD信號。針對UHF PD信號具有周期性窄帶噪聲與白噪聲的特點,提出了基于改進的經驗小波(experience wavelet,EWT)與小波變換結合進行UHF PD信號的去噪研究。首先,含噪信號通過EWT預處理分解爲多頻率的模態函數,然後對模態函數進行小波去噪處理,將去噪後的模態函數按照峭度值進行劃分,根據合適的阈值選取UHF PD信號的有效成分並重構信號,最後,通過構建UHF PD仿真信號並采用實測數據驗證所提算法的有效性。仿真實驗與實測去噪結果表明:文中所提改進去噪算法具有良好的噪聲抑制能力,爲GIS設備內部UHF PD信號去噪提供參考。
                      Abstract:
                      In order to solve the problem that the internal discharge (PD) signal of gas insulated switchgear (GIS) contains noise, this paper builds a simulated partial discharge environment, and using ultra-high frequency (UHF) to acquire the defective PD signal. In view of the characteristics of periodic narrow-band noise and white noise for UHF PD signals, a denoising study of UHF PD signals based on improved experience wavelet (EWT) and wavelet transform is proposed. Firstly,the EWT transform can be used to decompose the signal into multi-frequency modal functions, then the modal function is wavelet denoised, divide the denoised modal function according to the kurtosis value, and select UHF PD according to the appropriate threshold. The active component of the signal and reconstructs the signal. Finally, the UHF PD simulation signal is constructed and the measured data is used to verify the effectiveness of the proposed algorithm. The simulation experiment and the measured denoising results show that the improved denoising algorithm proposed in this paper has good noise suppression ability. This paper provides a reference for the denoising of UHF PD signals inside GIS equipment.

                      參考文獻/References:

                      [1] 陳維榮, 宋永華, 孫錦鑫. 電力系統設備狀態監測的概念及現狀[J]. 電網技術, 2000, 24(11):12-17. CHEN Weirong, SONG Yonghua,SUN Jinxin. Concept and present situation of condition monitoring of power system equipment[J]. Power System Technology,2000,24(11):12-17.
                      [2] 高佳程, 田蘊卿, 朱永利, 等. 基于完全集合經驗模態分解和排列熵的局部放電信號的小波包去噪方法[J]. 電力系統及其自動化學報,2018,30(3): 1-7. GAO Jiacheng,TIAN Wenqing,ZHU Yongli,et al. Wavelet package denoising method for partial discharge signals based on CEEMD and PE[J]. Proceedings of the Chinese Society of Universities for Electric Power System and Automation, 2018,30(3): 1-7.
                      [3] 張 波, 劉成國, 徐 忠, 等. 小波去噪對提高GIS超聲局部放電信號識別率的研究[J]. 電氣工程學報,2017,12(11): 41-45. ZHANG Bo,LIU Chengguo,XU Zhong,et. Research on improving the recognition rate of GIS ultrasonic discharge signal by wavelet denoising[J]. Journal of Electrical Engineering,2017,12(11): 41-45.
                      [4] 席 維, 白 璘, 武奇生. 基于經驗小波變換和峭度值的滾動軸承故障檢測方法[J]. 工業儀表與自動化裝置,2018(6): 26-30. XI Wei, BAI Lin, WU Qisheng. A novel rolling bearing fault detection method based on empirical wavelet transform and kurtosis val[J]. Industrial Instrumentation & Automation,2018(6): 26-30.
                      [5] 邵 列. 局部放電檢測系統中的信號去噪與模式識別的研究[D]. 西安:西安電子科技大學, 2009. SHAO Lie. Research of de-noise and pattern-recognition in partial discharge detection system[D]. Xi’an:Xi’an Xidian University,2009.
                      [6] 代蕩蕩, 王先培, 龍嘉川, 等. 基于改進Protrugram和小波變換的超高頻局部放電信號去噪方法[J]. 高電壓技術,2018,44(11): 3577-3586. DAI Dangdang,WANG Xianpei,LONG Jiachuan,et al. De-noising method of ultra-high frequency partial discharge signal based on improved protrugram and wavelet transform[J]. High Voltage Engineering, 2018,44(11): 3577-3586.
                      [7] 胡明宇, 王先培, 肖 偉, 等. 基于UHF的局部放電信號小波包去噪與模式識別研究[J]. 儀表技術與傳感器,2016(7): 93-96. HU Mingyu,WANG Xianpei,XIAO Wei,et al. Wavelet packet de-noising and PNN pattern recognition for partial discharge based on UHF[J]. Instrument Technique and Sensor,2016(7): 93-96.
                      [8] 王永強, 張 斌, 李長元, 等. 基于改進DTCWT的GIS局部放電信號降噪方法的研究[J]. 高壓電器,2018,54(3): 10-16. WANG Yongqing,ZHANG Bin,LI Changyuan,et al. Study on noise reduction method of GIS PD signal based on the improved DTCWT[J]. High Voltage Apparatus,2018,54(3): 10-16.
                      [9] 張藝還, 王旭紅, 郭 良, 等. 基于歸一化自相關函數與類小波軟阈值法的GIS局放信號降噪方法研究[J]. 高壓電器,2018,54(3): 17-24. ZHANG Yihuan,WANG Xuhong,GUO Liang,et al. Partial discharge detection for GIS based on normalized autocorrelation function and similar wavelet[J]. High Voltage Apparatus,2018,54(3): 17-24.
                      [10] 李藍青, 趙 剛. 粒子群算法用于局部放電小波阈值去噪[J]. 電氣自動化,2018,40(1): 112-115. LI Lanqing,ZHAO Gang. Application of particle swarm optimization to wavelet threshold de-noising for partial discharge[J]. Electrical Automation,2018,40(1): 112-115.
                      [11] 汪培培, 莫付江, 趙崗崗, 等. 基于小波和高階PDE的電纜局部放電去噪研究[J]. 電測與儀表,2017,54(22): 6-10. WANG Peipei,MO Fujiang,ZHAO Ganggang,et al. Research on de-noising of cables partial discharge based on wavelet and high order PDE[J]. Electrical Measurement & Instrumentation. 2017,54(22): 6-10.
                      [12] ALTAY -, KALENDERLI -. Wavelet base selection for de-noising and extraction of partial discharge pulses in noisy environment[J]. IET Science, Measurement & Technology,2015,9(3): 276-284.
                      [13] 陳 剛, 劉志剛, 張巧革. 一種基于譜峭度的局部放電信號提取新方法[J]. 電力自動化設備,2013,33(8): 94-100. CHEN Gang,LIU Zhigang,ZHANG Qiaoge. Partial discharge signals extraction based on spectral kurtosis[J]. Journal of Power Automation Equipment,2013,33(8):94-100.
                      [14] 卓澤贏, 曹 茜, 李 青. 基于EWT-KELM方法的短期風電功率組合預測[J]. 電測與儀表,2019,56(2):89-95. ZHUO Zeying,CAO Xi,LI Qing. Wind power short-term combined forecasting based on EWT-KELM method[J]. Electrical Measurement & Instrumentation,2019,56(2):89-95.
                      [15] 韓 超. 基于經驗小波變換的變壓器內部故障電流與勵磁湧流的識別研究[J]. 科學技術創新,2018(34): 28-30. HAN Chao. Identification of transformer internal fault current and magnetizing inrush based on empirical wavelet transform[J]. Journal of science and technology innovation,2018(34): 28-30.
                      [16] 段晨東, 張 榮. 基于改進經驗小波變換的機車軸承故障診斷[J]. 中國機械工程,2019,30(6): 631-637. DUAN Chendong,ZHANG Rong. Locomotive bearing fault diagnosis using an improved empirical wavelet transform[J]. Chinese Journal of Mechanical Engineering 2019,30(6): 631-637.
                      [17] 陳海永, 余 力, 劉 輝, 等. 基于經驗小波的太陽能電池缺陷圖像融合[J]. 山東大學學報(工學版),2018,48(5): 24-31. CHEN Haiyong,YU Li,LIU Hui,et al. Solar cell defect images fusion based on empirical wavelet[J]. Journal of Shandong University (Engineering Edition), 2018,48(5): 24-31.
                      [18] 趙 磊, 朱永利, 高豔豐, 等. 基于變分模態分解和小波分析的變壓器局部放電去噪研究[J]. 電測與儀表,2016,53(11): 13-18. ZHAO Lei,ZHU Yongli,GAO Yanfeng,et al. Research on denoising of transformer partial discharge based on variational mode decomposition and wavelet analysis[J]. Electrical Measurement & Instrumentation,2016,53(11): 13-18.
                      [19] 周力行. 變壓器局部放電檢測中的小波包去噪算法[J]. 高電壓技術,2001,27(1): 19-21. ZHOU Lihang. Noise eliminating algorithm by wavelet packet in on-line HV transformer PD detection[J]. High Voltage Engineering,2001,27(1): 19-21.
                      [20] 邱鵬鋒. 基于特高頻檢測的GIS局部放電類型識別研究[D]. 重慶:重慶大學, 2017. QIU Pengfeng, Research on partial discharge pattern recognition of GIS based on UHF[D]. Chongqing:Chongqing University 2017.
                      [21] LI N, ZHOU J, WANG Y, et al. Suppression of UHF partial discharge signals buried in white-noise interference based on block thresholding spatial correlation combinative de-noising method[J]. IET Generation, Transmission & Distribution,2012,6(5): 353-362.
                      [22] 馬 強, 唐 陽. 基于PSCAD的電力電纜局部放電信號檢測仿真研究[J]. 電工技術,2018(16): 60-61. MA Qinag,TANG Yang. Simulation research on PD signal detection of power cable based on PSCAD[J]. Electrical Technical Periodicals,2018(16): 60-61.
                      [23] TANG J, LIU F, ZHANG X, et al. Partial discharge recognition based on SF6 decomposition products and support vector machine[J]. IET Science, Measurement & Technology,2012,6(4):198.

                      備注/Memo

                      備注/Memo:
                      秦金飛(1989—),男,碩士,工程師,主要從事電力設備高壓試驗、狀態檢測等領域的研究。收稿日期:2019-05-02; 修回日期:2019-06-14 基金項目:國網安徽省電力有限科技項目資助。 Project Supported by Science and Technology Project of State Grid Anhui Province Power Limited Company.
                      更新日期/Last Update: 2019-07-15