[1]程 杉,倪凱旋,蘇高參,等.基于DAPSO算法的含分布式電源的配電網重構[J].高壓電器,2019,55(07):195-202.[doi:10.13296/j.1001-1609.hva.2019.07.028]
 CHENG Shan,NI Kaixuan,SU Gaocan,et al.Reconfiguration of Distribution Network with Distributed Generations Based on DAPSO Algorithm[J].High Voltage Apparatus,2019,55(07):195-202.[doi:10.13296/j.1001-1609.hva.2019.07.028]
點擊複制

基于DAPSO算法的含分布式電源的配電網重構()
分享到:

《高壓電器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第55卷
期數:
2019年07期
頁碼:
195-202
欄目:
研究與分析
出版日期:
2019-07-15

文章信息/Info

Title:
Reconfiguration of Distribution Network with Distributed Generations Based on DAPSO Algorithm
作者:
程 杉12 倪凱旋2 蘇高參3 孫偉斌2
(1. 新能源微電網湖北省協同創新中心(三峽大學), 湖北 宜昌 443002; 2. 三峽大學電氣與新能源學院, 湖北 宜昌 443002; 3. 國網重慶市電力公司檢修分公司, 重慶 404100)
Author(s):
CHENG Shan12 NI Kaixuan2 SU Gaocan3 SUN Weibin2
(1. Hubei Collaborative Innovation Centre for Microgrid of New Energy(China Three Gorges University), Hubei Yichang 443002, China; 2. College of Electrical Engineering & Renewable Energy, China Three Gorges University, Hubei Yichang 443002, China; 3. State Grid Chongqing Power Company Maintenance Branch, Chongqing 404100, China)
關鍵詞:
配電網重構 分布式電源 輻射型約束 粒子群優化算法
Keywords:
distribution network reconfiguration distributed generation radial constraints particle swarm optimization algorithm
DOI:
10.13296/j.1001-1609.hva.2019.07.028
摘要:
爲了改善智能算法性能、提高尋優效率、滿足網絡輻射狀和連通性約束,提出一種基于動態自適應粒子群優化(DAPSO)算法的含分布式電源的配電網絡重構策略,用于求解重構的離散變量優化問題。動態自適應調整慣性權重和對速度進行變異,避免算法陷入局部最優,保持全局開拓和局部探索的動態平衡,加強算法的尋優性能。采用“解環”法,確保重構後網絡爲輻射型並保證網絡的連通性。基于IEEE33和PG&E69節點系統的仿真結果顯示,DAPSO算法收斂速度快、全局尋優能力強、穩定性好,其尋優重構方案可有效降低網損,改善電壓水平,優于其他方法的結果,具有很好的實用價值。
Abstract:
In order to improve the performance of intelligent algorithms and the optimization efficiency; the dynamic adaptive particle swarm optimization (DAPSO) is presented in this paper to search the best scheme of network reconfiguration with distributed generation thus to meet the network radiation and connectivity constraints; and the reconfiguration of distribution is a discrete variable optimization problem. The DAPSO can adaptive change inertia weight and the speed of the particles. It maintains the global development and local exploration of dynamic balance thus can enhance the optimization performance of the algorithm. The “loop disconnect” method is used to solve the problem of reconstruction. The network is kept in radiated and it can ensure network connectivity at the same time after configuration. The simulation results based on IEEE33 nodes system and PG & E69 nodes system show that DAPSO algorithm has the advantages of fast convergence speed; strong global optimization ability and great stability. Its optimal reconstruction scheme can effectively reduce the network loss and improve the voltage level. It’s better than other methods and has great practical value.

參考文獻/References:

[1] 徐玉琴, 李雪冬, 張繼剛, 等. 考慮分布式發電的配電網規劃問題的研究[J]. 電力系統保護與控制, 2011, 39(1): 87-91. XU Yuqing, LI Xuedong, ZHANG Jigang, et al. Research on distribution network planning considering DGs[J]. Power System Protection and Control, 2011, 39(1): 87-91.
[2] 董開松, 謝永濤, 賈 嵘,等. 面向主動式配網的微電網技術探究[J]. 高壓電器, 2015,51(6):97-100. DONG Kaisong, XIE Yongtao,JIA Rong, et al. Research on microgrid technology for active distribution network[J]. High Voltage Apparatus, 2015,51(6):97-100.
[3] CHENG S, CHEN M Y, WAI R J, et al. Optimal placement of distributed generation units in distribution systems via an enhanced multi-objective particle swarm optimization algorithm[J]. Frontiers of Information Technology & Electronic Engineering, 2014, 15(4): 300-311.
[4] 程 杉. 含分布式電源的配電網多目標優化問題研究[D]. 重慶: 重慶大學, 2013. CHENG Shan. Study on multi-objective optimization of distribution network with distributed generation[D]. Chongqing: Chongqing University, 2013.
[5] 栾偉傑, 程浩忠, 楊國健, 等. 考慮網絡重構的配電網多目標運行方式優化[J]. 電力系統及其自動化學報, 2016, 28(10):1-7. LUAN Weijie, CHENG Haozhong, YANG Guojian, et al. Multi-objective operation mode optimization for distribution network using network reconfiguration[J]. Proceedings of the CSU-EPSA, 2016, 28(10):1-7.
[6] 黃 平. 粒子群算法改進及其在電力系統的應用[D]. 廣州: 華南理工大學, 2012. HUANG Ping. Dissertation submitted for the degree of doctor of philosophy[D]. Guangzhou: South China University of Technology, 2012.
[7] 馮春時. 群智能優化算法及其應用[D]. 合肥: 中國科學技術大學, 2009. FENG Chunshi. Swarm intelligence optimization algorithms and their applications[D]. Hefei: University of Science and Technology of China, 2009.
[8] 賈樹晉, 杜 斌, 嶽 恒. 基于局部搜索與混合多樣性策略的多目標粒子群算法[J]. 控制與決策, 2012, 27(6): 813-818. JIA Shujin, DU Bin, YUE Heng. Local search and hybrid diversity strategy based multi-objective particle swarm optimization algorithm[J]. Control and Decision, 2012, 27(6): 813-818.
[9] 于永哲, 黃家棟. 基于混合智能算法的配電網絡重構[J]. 南方電網技術, 2010, 4(1):76-79. YU Yongzhe, HUANG Jiadong. Reconfiguration of distribution network based on hybrid intelligent algorithm[J]. Southern Power System Technology, 2010, 4(1):76-79.
[10] 劉 健, 張小慶, 張志華,等. 配電網兩相接地短路故障定位與供電恢複[J]. 電力系統自動化, 2013, 37(5):105-110. LIU Jian, ZHANG Xiaoqing, ZAHNG Zhihua, et al. Loction and restoration of two-phase grounded short-circuit in distribution systems[J]. Automation of Electric Power Systems, 2013, 37(5):105-110.
[11] 雷金勇, 李戰鷹, 盧澤漢,等. 分布式發電技術及其對電力系統影響研究綜述[J]. 南方電網技術,2011,5(4):46-50. LEI Jinyong, LI Zhanying, LU Zehan, et al. Review on the Research of distributed generation technology and its impacts on electric power systems[J]. Southern Power System Technology, 2011, 5(4):46-50.
[12] 盧 揚, 吳俊勇, 郝亮亮. 基于改進MOBPSO算法的含分布式電源的多目標配電網重構[J]. 電力系統保護與控制, 2016, 44(7): 62-68. LU Yang, WU Junyong, HAO Liangliang. Multi-objective distribution network reconfiguration with distributed generations based on improved MOBPSO algorithm[J]. Power System Protection and Control, 2016, 44(7): 62-68.
[13] 程 虹,高元海,王 淳. 基于無重訪NSGA-Ⅱ算法的配電網多目標重構[J]. 電力系統保護與控制, 2016,7(23): 10-16. CHENG Hong, GAO Yuanhai, WANG Chun. Multi-objective distribution network reconfiguration base on non-revisiting NSGA-II algorithm[J]. Power System Protection and Control, 2016,7(23): 10-16.
[14] 劉衍民, 隋常玲, 趙慶祯. 基于K—均值聚類的動態多種群粒子群算法及其應用[J]. 控制與決策, 2011, 26(7): 1019-1025. LIU Yanming, SUI Changling, ZHAO Qingzhen. Dynamic multi-swarm particle swarm optimizer based on k-means clustering and its application[J]. Control and Decision, 2011, 26(7): 1017-1025.
[15] SIERRA M R, COELLO C A. Multi-objective particle swarm optimizers: a survey of the state-of-the-art[J]. International Journal of Computational Intelligence Research, 2006, 2(3): 287-308.
[16] 付文鋒, 李嘉華, 王藍婧,等. 基于動態自適應粒子群算法的二次再熱燃煤—捕碳機組熱力系統優化設計[J]. 中國電機工程學報, 2017, 37(9):2652-2659. FU Wenfeng, LI Jiahua, WANG Lanjing, et al. Optimal design for thermodynamics system of double reheat coal-fired power plants withpost-combustion carbon capture based on dynamic adaptive particle swarm optimization[J]. Proceedings of the CSEE, 2017, 37(9):2652-2659.
[17] RATNAWEERA A, HALGAMUGE S K, WATSON H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 240-255.
[18] CHENG S, HU G, QIN T Y. Application of quorum sensing to pso and mopso for convergence promotion[C]//Chinese Control & Decision Conference.[S.l.]:[s.n.],2014: 1106-1110.
[19] 李 娟, 楊 琳, 劉金龍,等. 基于自適應混沌粒子群優化算法的多目標無功優化[J]. 電力系統保護與控制, 2011, 39(9):26-31. LI Juan, YANG Lin, LIU Jinlong, et al. Multi-objective reactive power optimization based on adaptive chaos particle swarm optimization algorithm[J]. Power System Protection and Control, 2011, 39(9):26-31.
[20] 吳辰斌, 李海明, 劉 棟,等. 一種改進型粒子群優化算法在電力系統經濟負荷分配中的應用[J]. 電力系統保護與控制, 2016, 44(10):44-48. WU Chenbin, LI Haiming, LIU Dong, et al. Application of improved particle swarm optimization algorithm to power system economic load dispatch[J]. Power System Protection and Control, 2016, 44(10):44-48.
[21] 黃炜果, 劉俊勇, 魏震波,等. 考慮冗余電量和時序性的分布式電源的選址定容[J]. 高壓電器, 2016,52(3):93-99. HUANG Weiguo, LIU Junyong, WEI Zhenbo, et al. Sizing and siting of multi-types of distribution generator considering redundant electricity and timing characteristics[J]. High Voltage Apparatus, 2016,52(3):93-99.
[22] 楊廣傑. 含分布式電源的配電網重構[D]. 北京: 華北電力大學電氣與電子工程學院, 2012. YANG Guangjie. Research on network reconfiguration of distributionsystem with distributed generation[D]. Beijing: North China Electric Power University, 2012.
[23] 張萬月, 陳星莺, 余 昆,等. 基于增廣節點支路關聯矩陣的前推回代潮流算法[J]. 電網與清潔能源, 2015, 31(12):62-67. ZHANG Wanyue, CHEN Xingying, YU Kun, et al. Augmented node branch incidence matrix based back/forward sweep flow calculation[J]. Power System and Clean Energy, 2015, 31(12):62-67.
[24] 湯姗姗. 基于改進自適應遺傳算法的含分布式電源的配電網重構[D]. 濟南: 山東大學, 2013. TANG Shanshan. Research on reconfiguration of distribution network with distributed generation based on refined adaptive genetic algorithm[D]. Jinan: Shandong University, 2013.

備注/Memo

備注/Memo:
程 杉(1981—),男,博士,副教授,主要研究方向爲新能源微電網運行與控制、EV充換電設施與可再生能源集成、智能計算及其在電力系統中的應用。收稿日期:2018-11-29; 修回日期:2019-01-29 基金項目:國家自然科學基金項目(51607105);湖北省教育廳科學技術研究項目(Q20161203);三峽大學碩士學位論文培優基金(2019SSPY058)。 Project Supported by the National Natural Science Foundation of China(51607105), Hubei Provincial Department of Education Science and Technology Research Project(Q20161203),Research Found for Excellent Dissertation of China Three Gerges
更新日期/Last Update: 2019-07-15